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--Most time-domain, wave modeling problems in geophysics are intractable by classical analysis methods, due
principally 1o nonseparability and to a lesser extent material nonlinearity. Therefore discrete numerical solutions
are often necessary for the simulation of realistic models. Applications in 2-D and 3-D geophysical modeling are
the subject of this paper, particularly as solved on a CRAY-2 supercomputer. Implementation and performance
differences between earlier CRAYs and the CRAY-2 are described, including the discrepancy between scalar
fetch and vector processing speeds. Explicit finite element solvers are applied to applications involving 2-D
simulation of a seismic refraction experiment across the state of Maine, 3-D simulation of near-source scattering
experiments, and both linear and nonlinear axisymmetric source simulation. Results show that the CRAY-2
allows cost-effective 2-D simulations of truly large-scale models, but only begins to be effective in 3-D for
models of interest in geophysics. The large memory (256 megawords) is adequate but a speed increase of at least
an order of magnitude is necessary for cost-effective 3-D. True multiprocessor capability (rather lhan mulu-
computer’) provides an alternative to raw speed but involves another set of difficulties. | "£~.. ., .

1. Introduction

A large number of the time-domain, wave modeling problems in geophysics are intractable by
classical analysis methods—by virtue of either nonseparability or nonlinearity. In fact, only a
few practical problems are addressed by classical analysis, i.e., separable and linear, although this
restricted class has received most of the theoretical attention. The broader class of nonseparable,
nonlinear problems requires discrete numerical solutions. Some of these discrete time-domain
wave propagation problems in geophysics are the subject of this paper, particularly as they are
implemented and solved on the CRAY-2 supercomputer. The paper emphasizes various perfor-
mance and modeling issues, with little attention given to analytical development.

By way of background recall that separability depends on the medium’s degree of inhomo-
geneity, namely, whether it conforms to a separable coordinate system for the governing partial
differential equations. Separability is not a good global assumption in general geophysical
applications. In contrast, the typical assumption of linearity depends on the medium’s constitu-
tive model and, excluding the immediate source region, is often a good global assumption.

Separable problems include the common homogeneous or vertically stratified half-space and
are well solved by classical methods, with weak inhomogeneities sometimes included via
perturbation methods. For truly nonseparable problems, characterized by significant deviation
from the layered half-space, no corresponding analytical methods are available. Either local
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geometrical solutions or global numerical solutions are necessary, provided in practice by
geometrical diffraction and ray theory or discrete numerical methods like finite difference and
finite element wave solvers, and to a lesser extent by boundary integral methods.

Nonlinear continuum mechanics problems typically involve irreversible material behavior due
to strains beyond the elastic limit (constitutive). Nonlinearities may also be due to large
displacements and/or rotations (geometric). However, the contribution of geometric nonlineari-
ties is generally secondary to constitutive effects in geophysical modeling. An effective means of
including these constitutive nonlinearities is through a rigorous plasticity formulation.

The ‘best’ approach for practical global solutions of nonlinear, nonseparable wave propa-
gation problems in geophysics is a discrete method. Reasons for ‘his choice include ease of
modeling, minimal need for geometric or material idealization, full wave representation, and the
availability of efficient algorithms in conjunction with supercomputers. Certainly, discrete
methods have their share of drawbacks as well, including the inability to generalize results of one
calculation beyond its basic parameters, the difficulty of separating wave phenomena, e.g., body
waves and surface waves, and errors associated with a finite model boundaries.

To address both the pros and cons of discrete numerical methods in geophysics, this paper
describes some applications of explicit finite element solvers to large-scale wave modeling
problems, principally on the CRAY-2 supercomputer. These include 2-D modeling of a refrac-
tion experiment across the state of Maine, 3-D modeling of some near-source scattering
experiments, and both linear and nonlinear source modeling simulations.

2. Background

The discrete wave solvers applied here incorporate finite element reductions of the governing
partial differential equations to ordinary differential equations in time. These ODEs are
integrated forward in time using a modified leapfrog scheme (centered differences). The routines
are included in a pre- and post-processing shell called FLEX, designed for efficient modeling,
solution, and interpretation of large-scale propagation problems (mechanical or electromagnetic)
[1]). The code was orginally written to take advantage of the architecture and power of CRAY
computers by developing fully vectorized kernel processing loops first, followed by an efficient
code architecture to support them. Rather than use one general purpose processing routine, a
group of specialized finite element and finite difference routines was developed for each class of
problems, including 1-D, plane and axisymmetric 2-D, and full 3-D. FLEX was designed to
minimize storage requirements for each problem by using an internal data management system
that avoids the use of dimensioned arrays within the code. The system automatically and
adaptively sets up internal data arrays as required by the problem at hand. Very large problems
are efficiently stored in memory, thus avoiding 1 /0 limitations of data transfer to disk.

2.1. Finite element solvers

The explicit finite element routines applied in this paper to linear and nonlinear continuum
mechanics problems employ bilinear (2-D) or trilinear (3-D) shape or interpolation functions
over each element, e.g. see [2]. Element geometry is either Cartesian (rectangles and bricks in 2-D
and 3-D, respectively) or skewed. The term, explicit (in contrast to implicit), effectively means
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that lumped masses are employed. This eliminates the need for assembly of a global stiffness
matrix and a mass matrix inversion. Instead, nodal forces are accumulated element-by-element
and the nodal (lumped mass) velocity increments are calculated from Newton’s law in incremen-
tal form. The algorithm is stable provided the timestep is less than the fastest wave’s transit time
across the smallest element. This follows since all nodes are effectively decoupled by the
fundamental hyperbolicity of the governing equations; in other words, the influence of a node
during one timestep cannot affect nodes more than one element away. Numerical noise
(roundoff) propagates one element per timestep.

The algorithm stores three types of quantities for each node—lumped mass M(n) velocity
vector V(n), and force vector F(n), where n=1,..., N, with N the total number of nodes. The
nodal velocity and force vectors’ dimension, d, is equal to the problem dimension, so there are
seven quantities per node in 3-D and five in 2-D (plane or axisymmetric). Velocities are defined
at full timesteps while forces are defined at timestep midpoints. Nodal displacements (U(n))
defined at timestep midpoints are not calculated directly, but may be found by integrating
velocities. Similarly, stresses are not explicitly calculated, but if required, e.g., in nonlinear
calculations, they are defined at the element centroid at timestep midpoints and updated using
incremental displacements.

The basic algorithm includes a vectorized force loop over rows of physically contiguous
elements (row by row) and a velocity loop over all of the nodes. In the force loop, increments
(AF = KAU = KVAt) are calculated at the nodes of each element and added to the nodal force
vector to obtain forces at the next half timestep (F= F+ AF). After all of the elements are
processed a single nodal loop updates velocities. In this loop, velocity increments (AV = M~'FA¢,
where M is diagonal) are calculated using the nodal forces at the previous half timestep, and
added to the nodal velocity vector to obtain values at the next full timestep (V' = V + AV). These
loops are repeated for the required number of timesteps.

Ninety percent of the floating-point operations in the algorithm occur in the element force
loop. For example, in a 2-D plane, elastic model, this loop fetches nodal velocities and forces as
well as material and shape information, performs 73 floating-point operations, and stores
updated nodal forces for each element in the row. In general, data arrays for the nodal and
clemental quantities are mapped into memory so that contiguous elements in a row have
contiguous storage locations. The resulting data structures are such that a row of elements of any
length can be integrated one timestep in a vectorized computation without the need of a gather
operation to fetch data into a contiguous local array, and a scatter operation on the results.

The code lends itself to efficient vectorization in ‘vanilla” FORTRAN (i.e.,, no assembly
coding necessary), and approaches the peak performance levels expected for ‘nonideal’ problems,
i.e., inhomogeneous, on pipelined supercomputers like the CRAY machines. This is not to say
that a supercomputer is required for practical calculations: tens of thousands of elements are
routinely executed on minicomputers, up to perhaps 100,000 elements, with reasonable execution
times.

2.2. Nonlinear constitutive behavior
Nonlinear material behavior can be modeled by a variety of constitutive relations and

numerical implementations. For soil-type and rock-type continua the so-called cap model has
proven effective, particularly in the context of explicit finite element or finite difference wave
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solvers. The cap model is essentially an algorithm implementing a rate-independent plasticity
theory with an associated flow rule. Since the formulation is not as well known as the discrete
wave propagation algorithms utilized in this paper, it is reviewed below.

The cap model, e.g., [3], is based on classical plasticity theory with incremental stress-strain
relations in the form

¢ =Cé, (2.1)

where o is the stress tensor (tension positive), € the strain tensor, and C the (tangent) modulus
matrix, assumed positive semi-definite to insure uniqueness, stability, and continuity. The cap
model is defined by a convex yield surface, Y(o), and a plastic strain rate vector, €, which is
normal to the yield surface in stress space so that
Y
+P = N\ ——
€&;i=A 30y, (2.2)
where A is a non-negative scalar function.
Bulk modulus K and shear modulus G are used to represent simple linear elastic behavior
inside the yield surface. The surface is defined by a fixed failure envelope and a hardening cap.
The failure envelope is defined by

Y(o)= \/f Fe(4), (2.3)
Fe(J))=A—Ce?h, (2.9)

where 4, B, and C are material parameters, J, is the first invariant of the stress tensor, and J,
the second variant of the deviatoric stress tensor. The cap is defined by

Y(o) = I = E.(J,, k) for L(x)>J, > X(x), (2.5)

where « is an internal state variable that measures hardening as a functional of plastic volumetric
strain history, and L(x), X(x) define the J,-range of the cap. Function F.(J;, «) is defined by

E(h. %) = (X0 = L) = [~ LT (2.6)
in which

L(x)= {8 :‘;::g (2.7)

X(x) = & — RF(x), (2.8)

where R is a material parameter.

Hardening parameter « is implicitly defined as a functional of the plastic volumetric strain, ¢’,
by means of a relation between X(k) and ¢?, which is then coupled with (2.8) to define k in
terms of ¢°. For soils, the relationship is

& = WePXo-X _ ], (2.9)
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in which W, D, and X, are material parameters and ¢ is a history-dependent functional of the
plastic volumetric strain and is given by the differential functional relation

&=

¢ iféfc0orx<o,
(2.10)

0 iféf>0and x>0.

If dilatancy occurs when J; > 0, (2.10) limits the shrinking of the cap to x = L(x) = 0. This
insures that the cap remains finite and is assumed to apply in general for soils. Such a limitation
is somewhat arbitrary in view of the lack of data with respect to material behavior after the
occurrence of tension failure.

Tensile stresses are limited by the condition that the first invariant of stress

J] ’< T’ (2.11)

so that T (a material parameter) represents a tension cutoff parameter. In order to insure that no
principal stress exceeds parameter T, the slope of the failure envelope (a measure of the friction
angle) has been appropriately limited.

The cap model provides a theoretically sound idealization for the salient features of nonlinear
soil behavior. The solution algorithm [3] is robust and quite efficient relative to many other
nonlinear material models and has proven effective for a wide variety of applications.

3. CRAY-2 implementation

The CRAY-2 was the largest and fastest ‘conventional’ supercomputer available at the time
the calculations described in this paper were performed (mid 1987). It uses a UNIX-based
operating system, has four available central processing units, and addresses 256 million words of
CMOS memory (typically). Other machines are available with theoretically faster architectures,
e.g., the Connection Machine, but they also require significant modification of the discrete
algorithms and are presently unproven for production problems.

The CRAY-2 is therefore the machine of choice for large-scale simulations, particularly since
similar CRAY-1 type machines have been available for years and optimal programming
techniques are fairly well understood. Note that the principal advantage of the CRAY-2 over
earlier CRAYs (the X-MP for example) is the large memory available. The factor of two to three
in speed is also significant but not the principal reason for its choice. The availability of four
processors is not very useful in practice since chargeable time is accumulated on each one, with
nontrivial overhead for multiprocessor usage. The only advantage is a factor of three or so
decrease in wall clock time. This is useful for reducing run time, given the possibility of a system
crash during extended runs. A better solution is to store memory images periodically for restarts
during long runs (> five hours or so).

3.1. FLEX on the CRAY-2
Several differences were found between the performance of FLEX on the CRAY-2 and its

performance on earlier CRAY machines. First, the original CRAY-1 FORTRAN coding
produced erroneous results on the CRAY-2 caused by the use of CDIRS IVDEP system
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commands that force vectorization of certain computational loops containing vector dependen-
cies. Specifically, this occurs for the elemental loops computing internal force contributions to
each node of an element. Since a node receives force contributions from two adjacent elements, it
is clear that if the internal force contributions of both ¢li:ments are being computed during the
same pass through the loop, there is a potential dependency problem. This issue was considered
during the initial development of FLEX and it was determined that forced vectorization gave
correct results. However, this did not carry over to the CRAY-2. The problem was easily
corrected by processing each row of elements in two passes, using a do loop increment of 2 to
ensure that two adjacent elements having common nodes would not be processed during the
same pass through the computational loop. This guaranteed that no vector dependencies would
occur if vectorization was forced.

A second difference worth noting between the CRAY-2 and earlier CRAYs is the speed of
scalar fetches from scattered memory locations. This issue involves the tradeoff between
increased storage versus CPU time in the design of efficient processing strategies, in particular,
to optimize storage for very large problems. For machines with 2—-4 million words of storage, it
was considered wasteful to store often duplicated material parameters for each element in the
model, i.e., bulk and shear moduli. It even seemed extravagant to store a single material number
of each element, since for a model containing one million elements, there are often less than 20
unique sets of material properties. The approach adopted on earlier CRAYs was to develop a
group of unique site profiles, condensed to minimum storage, and a pointer table defining the
site profile for each row of elements. In this way material properties of a homogeneous
1000 X 1000 element model can be completely defined by 1005 words of storage compared with
1,000,002 words if storing the material model number for each element and 2,000,000 words if
storing the bulk and shear moduli for each element.

When computing the internal resisting forces for a row of elements, the site profile for the row
is checked against the previous row’s profile, and if they differ, the condensed site profile for the -
new row is expanded and loaded, with one word for each element. The element material i
properties are loaded into the bulk and shear moduli arrays in a scalar loop since this process i

does not vectorize on the CRAY-2. On earlier CRAYS, the overhead associated with retrieving
the two material parameters at arbitrary locations in memory and placing them in consecutive
locations in a local array (to facilitate vectorization) was a factor of two in the worst case, i.e., 2
times the homogeneous site performance. Although expensive, this approach significantly in-
creased the size of models resident in memory, thus eliminating expensive disk I/0. In contrast, (
on the CRAY-2 it was found to increase the overall processing cost by at least a factor of 3.3.

The increased overhead follows because scalar fetches on the CRAY-2 are only slightly faster
than on the CRAY-1, but since vector processing is about 2.6 times faster the scalar overhead is
more significant. This can decrease the overall performance of the CRAY-2 to below CRAY-1
levels. After review, system analysts considered this scalar performance as normal for the
CRAY-2’s memory architecture and recommended replacing the single scalar loop fetching
material properties with a series of gather calls. The result of this effort was to slow processing
another 10 percent.

Based on these findings, it is clear that savings in storage afforded by using the site profile
approach are irrelevant on the CRAY-2 with its large memory, in view of the significant CPU
overhead incurred by scalar fetches of material properties. Consequently, the CRAY-2 version of
FLEX has been modified to store both the bulk and shear moduli for each element in the model.
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3.2. Performance comparisons

With the changes described above, FLEX achieves performance levels on the CRAY-2 that are
about 2.6 times those on the CRAY-1 and 1.8 times the CRAY X-MP. These comparisons are
for the same model and site profile description. For 2-D elastic axisymmetric problems, FLEX
can compute 1.4 million element-timesteps per second of CRAY-2 CPU time, and for 3-D
problems, it computes 0.28 million element-timesteps per second. For example, integrating a
1000 X 1000 element 2-D problem 2000 timesteps (2 billion element-timesteps) requires 2 X
10°/1.4 X 10° = 1429 seconds = 24 minutes, and integrating a 100 X 100 X 100 element 3-D
problem 200 timesteps (200 million element-timesteps) requires 2 X 10%/0.28 X 10° = 714 sec-
onds = 12 minutes.

The major advantage of the CRAY-2 is of course its large memory. For the explicit finite
element algorithm used in FLEX, memory requirements are 5 and 7 numbers per node in 2-D
and 3-D respectively. Storage of synthetic seismograms typically adds another 10 to 30 percent to
this, depending on the number of outputs points and components. Thus, the million element 2-D
and 3-D examples cited above would require on the order of 6 and 9 million words respectively
for the model and output. The calculations described below routinely use 10-30 million words,
with no disk access. No degradation in performance is observed as memory usage increases,
which has been verified for problems accessing up to 200 million words.

4. Large-scale 2-D simulations of a Maine refraction line

The first example calculation models a 200 km refraction line shot along an approximate
southeasterly track across the state of Maine. This was the longest line instrumented by the
United States Geological Survey during a 1984 cooperative refraction experiment in the north-
eastern United States and southeastern Canada, e.g., see [4]). The line is perpendicular to the
dominant structural features in the area and is reasonably approximated by a 2-D model. There
were three large, high explosive shots recorded on the line—at each end and in the middle—but
only the northwestern shot is modeled here.

4.1. The discrete model

The geologic model is illustrated in Fig. 1, showing a 50 X 183 km section of the Earth’s crust
and upper mantle with piecewise homogeneous structure—based on USGS data and interpreta-
tions [5). Near-surface seismic velocity features are represented in some detail in the section, as
well as the dominant topographic features (although not apparent in the figure). The finite
element model was composed of a uniform 1000 X 3660 Cartesian mesh (i.c., non-skewed) of
50 X 50 meter elements, for a total of 3.66 million elements (7.33 million nodal equations).
Interfaces and free surface topography were resolved step-wise by the mesh as in conventional
finite difference discretizations. Clearly, the CRAY-2 is essential for a model of this size since the
entire calculation (model and data) resides in-core to eliminate costly memory swaps to disk.

Although the geology is primarily 2-D on the Maine refraction line, the use of an effective
point source clearly makes the problem 3-D. Since 3-D modeling on the scale of this experiment
is impractical on any modern supercomputer (requiring on the order of 1000 times more power
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Fig. 1. A geologic model of the Earth’s crust and upper mantle on a southwest section across the state of Maine, from
[5). P-wave speeds are indicated in each homogeneous ‘layer’. Finer near-surface velocity structure and topography are
included but not apparent in the drawing.

and memory than presently available), a 2-D approximation is necessary. This was accomplished
by posing the problem as axisymmetric, with the source on the axis of symmetry, i.e., the left
(northwest) boundary of the model. Axial symmetry is preferable to a plane strain approxima-
tion because it exhibits the proper radial divergence, however, the resulting global model in 3-D,
obtained by sweeping the geologic section about the axis, certainly appears unphysical.

Boundary conditions applied to the finite element model include symmetry on the left side as
described above, a so-called absorbing or radiation condition on the bottom and right, and a
free-surface condition on the top. The absorbing boundary condition used here and in subse-
quent finite element calculations described below is the simple normal impedance condition
based on the unidirectional wave solution, [6] = —pc[v], relating jumps in stress and particle
velocity. This is implemented for both P- and S-wave incidence and does a surprisingly good job
for non-normally incident waves, particularly the P-wave. It is also readily vectorizable.

The seismic source used in the USGS refraction experiments was a 2000 pound cylindrical
charge of chemical high explosive. The six inch borehole was 150 feet deep, filled to a depth of 75
feet with explosive, and topped off with rained sand. Considering that the entire borehole is
contained in a single element of the large-scale finite element model, it was not practical to
include details of the source directly. Instead a simple surface pressure, actually lumped vertical
forces, with Gaussian distribution over a few nodes was applied to excite seismic waves. No
attempt was made to reproduce the actual source’s radiation pattern over takeoff angle. Linear
and nonlinear source simulations will be considered further in a subsequent section.

The source time function is chosen to match the observed or expected frequency content at
some range—in order to better compare synthetics to actual seismograms. However, for linear
models it is often more useful to calculate the impulse or step response, from which synthetic
seismograms due to an arbitrary source time function are obtained by convolution. The
frequency content of the derived response is of course limited by discretization, which, for the
low-order elements (linear interpolation) used here, typically means significant dispersion when a
wavelength is supported by eight elements or less. This behavior is implicit in the step or impulse
response.
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4.2. Finite element synthetic seismograms

Calculated response of the finite element model is illustrated in Figs. 2 and 3, showing
synthetic vertical velocity seismograms at two kilometer station increments between 0 and 180
km from the northwestern source. They show true ground motion, i.e., no instruments response is
included. Step response is plotted in the bottom suite of seismograms, and after convolution with
2 Hz and 0.5 Hz wavelets in the middle and top suites respectively. The synthetics in Fig. 2 are
scaled by range (multiplied by radius) to remove spherical spreading attenuation, and further
multiplied by ten to accentuate early arriving body waves. The synthetics in Fig. 3 are scaled by
the square root of range to remove the cylindrical spreading attenuation of surface waves and
clearly show the Rayleigh wave.

The seismograms in Fig. 2 show a variety of body wave behavior, including reflection and
refraction arrivals from the intermediate layers ( P;), reflections from the deeper interfaces (P*
and P_P), mode conversion of Moho reflected body waves (P,P) to Rayleigh waves by
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Fig. 2. Suites of magnified vertical velocity seismograms at 2 km station spacing across the Maine model. The records
clearly separate body and surface wave phases, which are labeled in the lower suite. The wavelet responses are
obtained from the step response by convolution.




56 G.L Wojcik et al. / Wave simulation on the CRAY-2

3s

30 .L" I
25 L-*‘
20 1339°
15 11297
10 34897 .5 HZ WAVELET x 1§
st )3t

3:0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

30
25
20
15 J
10 p
st 114411 | |

323 10 20 30 40 S0 60 7 80 90 100 110 120 130 140 150 160 170 180

30
25
20
15
10 STEP RESPONSE x 1

5 ]

oO 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
RANGE (KM)

Fig. 3. Suites of unmagnified vertical velocity seismograms across the Maine model, showing predominance of the
Rayleigh surface wave (R,).
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topography, and layer resonance of Moho reflections at distinct stations. They also show clear
Rayleigh to Rayleigh reflections from lateral velocity variations in the top layer, as well as from
topography. Observe that the various coherent phases are readily identified from the suites of
seismograms by their slope, i.e., inverse phase velocity. These have been measured from the 2 Hz
suite in Fig. 2 for the following interpretations.

The first arrivals out to about 110 km are P-wave reflections and refractions from the first
interface, while from 70 km and beyond the arrivals transition into deeper reflections and
refractions. Corresponding S-wave arrivals can also be seen preceding the Rayleigh wave, which
is clipped in these synthetics. Discernible from 50 km (subcritical) and stronger after 100 km
(supercritical) is the Moho reflection, which crosses the other body wave arrivals at about 170
km. At a range of 128 km a Rayleigh wave is seen to emerge at 24 seconds, traveling most
strongly to the left but also to the right. The mechanism is identified as scattering of the Moho
reflected P-wave by a 0.4 km step in topography (modeled by eight elements).

Figure 3 shows unclipped Rayleigh wave (R;) arrivals across the model. The wave propagates
about 2.65 km/s and travels halfway across the model when the calculation is terminated at 35 s.
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The mesh is adequate to support 3-4 Hz fundamental mode Rayleigh waves so the observed
dispersion of the 2 Hz wavelet (containing frequencies above 4 Hz) is partly due to numerical
dispersion in addition to the more significant effects of lateral and vertical velocity variations
near the surface. This figure clearly shows the relative strength of the Rayleigh wave compared to
body waves for a surface pressure source, but hides all details. Of more use is the magnified
response in Fig. 2. The middle synthetics show Rayleigh wave scattering by transitions in
topography occurring between 12 to 25 km in range, and by lateral changes in wave speed at 33
and 55 km. Since the model’s left side is assumed to be an axis of symmetry, apparent Rayleigh
wave reflections are also seen. These are from the symmetric scattering features on the other side
of the axis. This is of course a drawback of the axisymmetric approximation, however, the
nonphysical reflected phases are easily identified. In general, this large-scale 2-D simulation
produces a variety of propagation phenomena that would never be seen in a classical layered
half-space analysis but is observed in real data.

5. Large-scale 3-D simulations of a scattering experiment

The second example calculation considered here models some rudimentary aspects of 3-D
scattering experiments, performed by Reinke and Stump [6], in a small-scale alluvium site using
five pound buried charges with seismometers and accelerometers placed around the shot out to
20-30 meters. One purpose of the experiments was to investigate azimuthal variability of ground
motions by careful instrument calibration, exploration of site inhomogeneities, and the use of
repeated axisymmetric shots. The principal question of interest here is the scattering produced by
caliche lenses (cemented deposits) in the near-surface alluvial layer, and in particular, the
interaction of characteristic lengths, i.e., wavelength, layer depth and size of the scattering
feature. The following calculation was conducted to examine the feasibility of 3-D calculations to
evaluate scattering by cemented lenses.

5.1. The discrete model

The geologic model for this case, illustrated in Fig. 4, is a 30 X 30 X 6 meter quadrant of the
explosive testbed, including two layers of alluvial material—a 3 meter low-speed surface layer
over more competent alluvium. The finite element model is composed of 200 X 200 X 30 finite
elements, for a total of 1.2 million elements or 3.76 million nodal equations of motion. The
model is truncated on the bottom by an absorbing boundary condition, and similarly on the
outer boundaries, while the inner boundaries are symmetry planes. Elements in the lower layer
are elongated in depth by a factor of two.

In real geologies, there are typically many scatterers with assorted shapes and orientations
over the field of interest. For the purposes of this calculation, i.e., to determine propagation and
source parameters for 3-D scattering simulations, a single ellipsoidal lens was modeled in the top
layer, with nominal dimensions of 1 X 3 X S m and oriented as in Fig. 4. The P-wave speed ratio
between the caliche lens material and surrounding alluvium was taken as 2.6, based on field
measurements. No attempt was made to smooth the lens boundaries using skewed elements,
although comparisons of rough versus smooth scatterers should be made in future simulations.

The source in the field experiments is a five pound chemical explosive at the bottom of a two
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Fig. 4. The 3-D finite element model of a 30 X 30X 6 meter quadrant of the scattering experiment, from [6). Details of
the source cavity and scatterer show actual discretization. The upper layer is shown transparent, and the lower layer
discretization is drawn with only 75 elements on a side although 200 are used in the actual model.

meter borehole. Rather than simulate this source directly, a simple pressure function was applied
to a source cavity obtained by voiding elements around the symmetry axis in the model, as
illustrated in Fig. 4. The source’s pressure history was a step function, from which responses to
other source time functions are obtained by convolution, in the same manner as descrihe+ above
for the 2-D model.

3.2. Finite element synthetic seismograms

Three-component velocity time histories were recorded on two lines over the model’s free
surface. One extended from the source epicenter over the lens to the absorbing boundary (i.e., on
the line of symmetry), and the other was perpendicular to this line, extending from above the
lens centroid to the boundary. Vertical velocity synthetics are plotted in Fig. 5 on the radial and
crossing output lines, with the radial line data scaled by range and the cross line data merely
magnified.

These records show weak body wave phases followed by fairly strong surface waves. Some
limited observations can be made from these results, e.g., on the radial line the lens is seen to
scatter surface waves into body waves downstream, bul interpretation is complicated by the
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Fig. 5. Vertical velocity seismograms recorded on the cross and radial lines indicated by dots on the surface in Fig. 5.
In-plane components of velocity were also recorded for polarization studies.

superposition of incident and scattered fields in the simulation. To overcome this it is necessary
to run an additional free-field CRAY-2 simulation of the same geological model, i.e. with the
scattering obstacle replaced by the surrounding medium. Subtracting seismograms from the two
calculations yields the scattered field of interest. Of course this doubles the cost of analysis,
however, for scattering studies it is essential for quantitative interpretation to decompose the
incident and scattered wave fields.

Since the source geometry was rather coarse in this model, an additional free-field calculation
would also be useful in evaluating azimuthal uniformity of the radiation pattern. In addition, a
2-D axisymmetric, free-field simulation could be used as a basis for comparison. Therefore, with
the caveat that an additional free-field, 3-D simulation is required and a 2-D axisymmetric
simulation is useful, these results indicate that this type of 3-D geophysical modeling is sufficient
to produce useful data for experiment interpretation and planning. In order to draw further
conclusions from the synthetic data in Fig. 5 it is necessary to perform further simulations. These
are currently being done.

6. Seismic source modeling

One drawback of the models considered above is their inability to represent details of the
source, since in large-scale simulations this region is only covered by a few elements. A solution
is to either refine the mesh in the source region or perform a local source simulation and couple
it to the global mesh. The latter approach is examined here, namely, the use of separate source
simulations in highly refined models of the source region. Both linear and nonlinear models are
considered.

Two types of source problems are modeled. The first includes ‘nearly linear’ surface or
down-hole sources that apply vibratory or impulsive loads. These can be reasonably approxi-
mated by prescribing forces or velocities at an interface, with linear constitutive behavior
assumed in the medium. The second type is the explosive source, for which strongly nonlinear
material behavior dominates the near-source response. The explosive source involves a significant
modeling effort to incorporate the proper energy release and coupling, in addition to difficulties
associated with nonlinear constitutive behavior.
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6.1. Elastic source modeling

A few examples of near-field seismic source models are examined here, assuming elastic
properties. The idea is to model soil geometry around the source (mechanical vibrator, airgun,
etc.) in some detail, and apply suitable pressures or velocities at the interface. The simplest
geometry is the homogeneous half-space with prescribed surface pressure distribution and time
function. A slightly more complex geometry is the borehole on the axis of an axisymmetric
half-space, with either normal or shear tractions applied to all or part of the hole’s boundary.

Only simple wavelet time functions are considered, representing the dynamic part of a total
load. This total typically includes a significant static component, e.g., due to weight of the
mechanical vibrator or sonde, which is ignored here since dynamic signals are of principal
interest. It is permissible to have tension in the wavelet pressure boundary loading since this
would be biased to net compression by the neglected static component.

The first example is an axisymmetric pressure loading over a small area of the free surface of a
homogeneous 100 X 100 element model. The time function is a wavelet with center frequency
chosen so that about 20 elements support it. A Gaussian spatial distribution of lumped vertical
forces is assumed near the model axis. A sequence of vector snapshots shows the resulting
velocity wave field in Fig. 6. The left side is the axis of symmetry, the right and bottom sides are
absorbing boundaries, and the top is the free surface. The Gaussian pressure contributes
significant forces only on the leftmost three or four nodes. Note that the simple absorbing
boundary is quite effective for the P-wave, but less so for the S-wave at shallower angles, as well
as for the Rayleigh wave.

To quantify this refined source solution or incorporate it in larger models, a useful approach is
to record velocity time histories on a surface surrounding the source in its far field. For
convenience this is typically a Cartesian surface (rectangle or box) at 10-20 characteristic source
dimensions. In Fig. 7, results from the present calculation show velocities at a takeoff angle
increment of 15°. These are rotated to display radial and tangential motion. This approach
yields a simple spatial characterization of the source function. By calculating the impulse or step
response instead of a particular wavelet, other time functions can be obtained by convolution.

The remaining elastic examples considered here involve pressure or shear loading on a section
of a borehole. Figure 8 shows a snapshot sequence for a 75 ft hole with a pressure wavelet
applied over a 6 ft segment centered at a depth of 37 ft. Similarly, Fig. 9 shows a sequence for
the same geometry with a shear wavelet applied over the segment. The loads in both examples
transition from zero to full traction over one element, rather than tapering. This is too strong a
discontinuity for a discrete model to comfortably support, and consequently some spurious local
oscillations (so-called hourglassing) are excited. Hourglassing is automatically removed at the
element level by using orthogonality of the element’s model shapes, e.g., see [7].

The above results are useful in comparing different source types or in characterizing non-ideal
sources for input to a ray tracing model. These data are also necessary in order to interpolate
input to coarser models.

6.2. Ineiastic source modeling

There are various approaches to simulating underground chemical explosions. One is to apply
a pressure history to the boundary of a cavity defined at some suitable ‘elastic’ radius; another is
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Fig. 7. Velocity time histories versus takeoff angle for the calculation in Fig. 6. Amplitude is normalized to a unit
radius on radial lines from the center of the source region at 15° increments. The solid and dashed curves show radial
and tangential motion, respectively, and quantify the source’s radiation pattern.

to apply suitable initial conditions on velocity and pressure over an effective source region; and
still another is to model the expanding gases from the source starting from the initial explosive
volume. Of course the level of modelling detail can be further increased to include explosive
dynamics, vaporization, etc. More rigorous modeling is seldom necessary unless local effects like
i cavity growth or cratering are important.
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If no information is available on nonlinear constitutive behavior of the near-source medium,
then the only alternative is to prescribe pressure or velocity on an ‘clastic’ cavity boundary.
Details of the time function are either chosen to populate an observed frequency spectrum, or
determined from experimental data in similar media. If a nonlinear model is available then bulk
initial values can be used to incorporate additional source physics in the simulation. The
nonlinear basis for the present source simulation is the cap model.

Chemical explosives typically exhibit confined detonation pressures of 2.9 X 10° psi (200
kbars) or less. Cap parameters are defined for pressures up to 200,000 psi in the alluvial-type
media of interest here. Therefore, the cap model cannot represent material behavior in the
immediate neighborhood of the detonated explosive. It is necessary to determine a radius where
pressure has decayed to 200,000 psi and prescribe initial values over this volume determined
from shock jump conditions. This is the basis for the bulk initial value approach used here. It has
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Fig. 10. Suites of vertical velocity seismograms for the nonlinear and linear explosive source simulations. Upward
velocity is plotted to the left. For ranges less than 85 ft the response is dominated by surface spall. Beyond this range
nearly linear response is observed, yieiding 30 Hz single cycle wavelet-type motion.
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been used extensively by Sandler [8] and validated against a variety of explosive source
experiments.

The model examined here consists of a vertical cylinder of explosive 10 ft long and 0.25 ft in
diameter, with the upper end buried at a depth of 10 ft in homogeneous alluvium. Assuming a
nonlinear pressure decay proportional to 1/r? (for cylindrical geometry) yields the 200,000 psi
radius at about 0.5 ft. Therefore, the volume over which initial conditions are prescribed is 1 ft in
diameter and 11 ft long. This volume of material is initially pressurized to P, = 200,000 psi, with
initial radial velocity set to zero on the axis and increasing linearly to ¥V, at r = 0.5 ft, where V}, is
the particle velocity determined from the jump condition for a shock pressure of P, and a shock
speed based on the secant modulus.

The finite element model examined here covers a 150 ft deep by 200 ft wide axisymmetric
region of homogeneous material (alluvium) discretized into 151 X 200 elements. On the model
axis, elements are 0.5 ft wide so that initial conditions are prescribed over a single column eleven
clements long. Figure 10 shows vertical velocity synthetic seismograms for both nonlinear and
linear simulations. The two lower suites are magnifications of the nonlinear calculation, while the
upper shows elastic response for a low-pressure wavelet applied to the cavity boundary.

Since the explosive source is very energetic, soil immediately above and to the side of the
model axis is spalled, i.e., launched at high velocity with complete tension cutoff. This clearly
violates the assumptions of small strain theory and no claim is made that this late time behavior
is realistic. However, the waves of interest have propagated beyond the source region before
mesh distortions and constitutive uncertainties invalidate the solution. In any event, at a range of
85-90 ft, vertical velocity has decayed to a small fraction of that over the shot. This behavior is
shown in the lower suite and magnified by ten in the middle suite to show additional details.
Upward velocity is drawn to the left in the individual seismograms. Referring to the middle suite,
beyond 110 ft the sequence of phases are, first a P-wave with upward motion (loading) arriving
at the elastic wave speed, then a stronger P-wave about 10 ms later with downward motion
(unloading), and followed by an S-wave with upward motion again. This up-down-up motion is
suggestive of the common velocity wavelet approximation used as source time function in
geophysics. Integrated yields a 30 Hz up-down (sinusoidal) cycle in displacement for the present
nonlinear case.

The elastic simulation shown in the upper suite confirms that the slope of the phases in the
nonlinear synthetics correspond to elastic wave speeds of the medium. Center frequency of the
wavelet is 300 Hz, which is nonphysical but chosen to maximize separation between the phases
while minimizing grid dispersion. Clearly, the frequency is not high enough to separate the shear
and surface wave since they differ by about 8% in phase velocity for such geologic media.

7. Discussion and conclusions

This paper has described a number of discrete wave modeling problems in geophysics,
including the simulation of large-scale 2-D refraction experiments, small-scale 3-D scattering
experiments, and axisymmetric seismic sources, both linear and nonlinear. All of these problems
require numerical solution because some level of nonseparability or nonlinearity precludes the
use of classical analysis techniques.

Since the finite element algorithms employed operate at the lowest level of numerical
sophistication practical for the problems at hand, i.e., linear, Cartesian elements and explicit
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(leapfrog) integration, very little attention has been paid to theoretical background here since it is
well documented in the finite element and finite difference literatures. One exception is the cap
model for implementing nonlinear constitutive behavior, and so some theoretical background is
provided on this topic. The principal aims of the paper are to demonstrate the simulation and
performance capabilities of the CRAY-2, possibly the fastest and largest general purpose
machine available today, and to familiarize the theoretical analysis community with some of the
practical modeling issues and problems encountered in geophysics. These issues include (1) the
capacity for large-scale inhomogeneous models and their efficient implementation, (2) very fast
processing with very large, fast memory, and (3) capability for nonlinear behavior, material
attenuation, and radiation boundary conditions.

7.1. Large-scale modeling capacity

Regarding CRAY-2 machine capacity for large-scale simulation, we can comfortably assert
that 2-D models are well-resolved and appear cost-effective for most practical linear propagation
problems, however, 3-D models remain resource limited and are not cost-effective. Here the term
cost-effective means that simulations cost much less than the physical experiments. The reason
for the disparity between 2-D and 3-D capability is that, for explicit calculations, computational
and memory requirements grow like n¢*! where n is the number of nodes in a representative
direction, and 4+ 1 includes the problem’s spatial dimension (d) and time dimension. For
example, if it is necessary to double a model’s size or mesh resolution (halve the spacing), then
resource requirements increase by a factor of 8 in 2-D and a factor of 16 in 3-D. This additional
factor in 3-D is all too often prohibitive, not necessarily in terms of memory but more often in
terms of execution time.

In terms of the 3-D scattering model described above, the frequency resolution (element size)
is adequate but the symmetry conditions and depth are too restrictive to reproduce the full
experiment. As a consequence the model’s size needs to be effectively doubled. For this more
realistic model the execution time would increase from 1.5 hours to 24 hours, while memory
requirements would increase from 20 million words to about 160 million. For this grid a
numerical simulation would probably cost twice as much as the experiment.

In the case of the 2-D refraction model considered above, the original discretization had twice
the element size of the final mesh. Unfortunately, this coarse model would not support wavelet
frequencies much above 1 Hz, and since the experiments indicated at least 4 Hz signal resolution
the element size was halved as a compromise. Consequently, the execution time went from an
original estimate of 1 hour to over 8 hours, and memory quadrupled from 5 million to 20 million
words. However, this simulation still cost a small fraction of one of the original refraction
experiments.

7.2. Speed and memory

The principal requirement for the large-scale simulations described in this paper is minimizing
disk 1/0 by retaining the entire model in fast memory. Thus, very large memories are necessary
and the 256 million words available on the CRAY-2 are adequate. However, there is a hardware
mismatch between scalar fetch and vector processing speed, which can seriously degrade
performance. Fortunately it can be circumvented by using less sophisticated inhomogeneous
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model representations at the expense of memory. This puts a serious limitation on problem size
when the memory limit is 2 megawords (early CRAY-1), but is insignificant with 256 megawords
available. Experiments with very large problems requiring upwards of 200 megawords show that
there is no degradation in performance as memory usage approached the limits of the machine.

The major issue in large-scale, explicit wave simulation is processing speed. In order to do
practical 3-D modeling, at least an order of magnitude increase in speed is necessary, for the
reasons cited above. Furthermore, this capability should not cost much more than present CPU
charges (31000 to $3000 per hour say), otherwise we could use the CRAY-2 as it stands and pay
$25,000 to $50,000 per calculation. The point is to make 3-D calculations timely and affordable
by increasing speed while holding cost constant. The digital computer’s forty year history and
present state shows that this is not an unreasonable expectation.

There are two avenues available to increase processing speed: one is to increase the central
processor’s clock rate and the other is to increase the number of processors. A factor of three
increase in speed (faster clock, more efficient vector processors) can be reasonably expected in
the next generation of CRAY machines, and by using the four available processors a factor of 10
could probably be achieved. Unfortunately, the cost would be prohibitive since these multi-
processor supercomputers are in reality multicomputers, essentially four computers in one, with
the cost directly proportional to the number of processors used. The alternative is to use a
dedicated multiprocessor machine with slower processors but many more of them. This solution
of course depends on the ability to logically partition the problem, assign pieces to the
processors, avoid memory conflicts, etc. These are currently research questions but will be
addressed soon since machines are available and there exist large-scale problems demanding
solutions. However, it is not clear that CRAY-type machines will provide the necessary hardware
and software.

7.3. Nonlinear behavior, material attenuation, and boundary conditions

We gather here some comments on other technical issues illustrated by the source models
described above. These linear and nonlinear models are local refinements of the source regions in
large-scale simulations, and all are in homogeneous media. They were readily calculated on a
minicomputer rather than a CRAY.

The ability to model nonlinear material behavior is critical near energetic sources such as
explosions. This is not to say that mechanical devices do not involve some level of nonlinearity,
only that it does not obviously dominate the solution. Note that the nonlinear behavior
associated with medium to low stress levels has not been characterized to the extent that high
dynamic stress levels have. The important feature of nonlinear modeling with the cap and similar
plasticity algorithms is their extensive use of stress state tests and logical branching. This
branching effectively prevents vectorization of the algorithm. Consequently, nonlinear geophysi-
cal simulations are not vectorizable on CRAY-type supercomputers, hence are quite slow. An
alternative is to use parallelism to speed up the cap algorithm, but this is not yet feasible on
CRAYSs.

None of the models considered here include anelastic attenuation, i.e., frictional damping, in
the material behavior. Although this feature is straightforward in implicit frequency domain
simulations, it is difficult to incorporate in the time domain. An implementation is available in
FLEX, using a standard linear solid algorithm tuned to give constant damping over a given range
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of frequencies. However, the requisite memory and arithmetic operations exact a significant cost.
Such ad hoc attenuation models should be used with caution when signal attenuation is an
important feature of a time-domain simulation.

Regarding boundary conditions, it is clear that discrete wave simulation models must be
truncated in space by suitable radiation boundary conditions. For the present examples, the
lowest-order condition assuming normal incidence of plane P- and S-waves was generally
adequate. Higher-order conditions valid for wider incidence angles are available [9), but in many
cases are unnecessary since boundary reflections from the model’s side can usually be identified
in the synthetic seismograms.

Since virtually all theoretical work on time-domain absorbing boundaries assumes a homoge-
neous medium, any implementation is degraded when properties vary along the boundary, e.g.,
on the side. This depth variation is the rule in geophysics and should be accommodated in future
theoretical work. Some care must also be exercised on the model’s lower boundary because the
typical increase of propagation speed with depth in geologic models causes waves to turn away
from the bottom, becoming more grazing there and less efficiently absorbed. Finally, note that
radiation conditions in nonlinear models present a host of new difficulties.

7.4. Conclusions

The calculations described here give an indication of our present ability to simulate large-scale,
time-domain wave propagation in nonseparable or nonlinear models. They show that one of the
most powerful supercomputers available today, the CRAY-2, can indeed perform very large,
2-D, elastic simulations efficiently, despite an imbalance between scalar memory access and
vector processing speeds. Of course this assumes that the principal processing loops are fully
vectorized. Explicit, linear wave solvers are well suited to vectorization, in contrast to nonlinear
constitutive algorithms for example.

The calculations also indicate that, for 3-D problems commonly encountered in geophysics,
still more speed is required. This is not to say that we cannot do useful 3-D simulations with the
CRAY-2. In fact the above scattering example shows that some limited but interesting 3-D
simulations in geophysics can finally be addressed at reasonable cost. What must be emphasized
is that cost grows so quickly in the third dimension, that only processor speed increases by one,
or better yet, two orders of magnitude, will push affordable model size beyond the minimum
required for adequate temporal and spatial resolution. Multiprocessor (not multicomputer)
hardware with distributed algorithms (e.g., Connection type machines), or vector-parallel ma-
chines with suitable compilers (e.g., Alliant type), provide another avenue to achieving the
necessary speed increase.

Simulations of the type described here are the only means of investigating propagation
phenomena involving both range and depth dependent (nonseparable) or nonlinear model
properties. Other options like ray tracing or boundary integrals involve idealizations that are
unacceptable for this broader class of earth models. Note that discrete geophysical simulation
has, here and elsewhere, been used principally for the forward problem. As the above perfor-
mance issues are addressed more fully by software and hardware, it will eventually become
possible to implement discrete models for the inverse problem, i.c., in an optimization loop with
the synthetic data generated from discrete trial models. This possibility is perhaps the ultimate
goal of geophysical simulation research.
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